Sampling algorithms for stochastic graphs: A learning automata approach
نویسندگان
چکیده
Recently, there has been growing interest in social network analysis. Graph models for social network analysis are usually assumed to be a deterministic graph with fixed weights for its edges or nodes. As activities of users in online social networks are changed with time, however, this assumption is too restrictive because of uncertainty, unpredictability and the time-varying nature of such real networks. The existing network measures and network sampling algorithms for complex social networks are designed basically for deterministic binary graphs with fixed weights. This results in loss of much of the information about the behavior of the network contained in its time-varying edge weights of network, such that is not an appropriate measure or sample for unveiling the important natural properties of the original network embedded in the varying edge weights. In this paper, we suggest that using stochastic graphs, in which weights associated with the edges are random variables, can be a suitable model for complex social network. Once the network model is chosen to be stochastic graphs, every aspect of the network such as path, clique, spanning tree, network measures and sampling algorithms should be treated stochastically. In particular, the network measures should be reformulated and new network sampling algorithms must be designed to reflect the stochastic nature of the network. In this paper, we first define some network measures for stochastic graphs, and then we propose four sampling algorithms based on learning automata for stochastic graphs. In order to study the performance of the proposed sampling algorithms, several experiments are conducted on real and synthetic stochastic graphs. The performances of these algorithms are studied in terms of Kolmogorov-Smirnov D statistics, relative error, Kendall’s rank correlation coefficient and relative cost.
منابع مشابه
Learning Automata-Based Algorithms for Finding Minimum Weakly Connected Dominating Set in Stochastic Graphs
A weakly connected dominating set (WCDS) of graph is a subset of so that the vertex set of the given subset and all vertices with at least one endpoint in the subset induce a connected sub‐graph of . Finding the WCDS is a new promising approach for clustering the wireless networks. The minimum WCDS (MWCDS) problem is known to be NP‐hard, and several approximation algo...
متن کاملFinding Minimum Vertex Covering in Stochastic Graphs: A Learning Automata Approach
Structural and behavioral parameters of many real networks such as social networks are unpredictable, uncertain and time varying parameters and for these reasons deterministic graphs for modeling such networks are too restrictive to solve most of the real network problems. It seems that stochastic graphs, in which weights associated to the vertices are random variable, may be a better graph mod...
متن کاملFinding Maximum Clique in Stochastic Graphs Using Distributed Learning Automata
Because of unpredictable, uncertain and time-varying nature of real networks it seems that stochastic graphs, in which weights associated to the edges are random variables, may be a better candidate as a graph model for real world networks. Once the graph model is chosen to be a stochastic graph, every feature of the graph such as path, clique, spanning tree and dominating set, to mention a few...
متن کاملLearning automata-based algorithms for solving stochastic minimum spanning tree problem
Due to the hardness of solving the minimum spanning tree (MST) problem in stochastic environments, the stochastic MST (SMST) problem has not received the attention it merits, specifically when the probability distribution function (PDF) of the edge weight is not a priori known. In this paper, we first propose a learning automata‐based sampling algorithm (Algorithm 1) to solve the MST problem in...
متن کاملStochastic graph as a model for social networks
Social networks are usually modeled and represented as deterministic graphs with a set of nodes as users and edges as connection between users of networks. Due to the uncertain and dynamic nature of user behavior and human activities in social networks, their structural and behavioral parameters are time varying parameters and for this reason using deterministic graphs for modeling and analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Knowl.-Based Syst.
دوره 127 شماره
صفحات -
تاریخ انتشار 2017